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High-throughput methods implemented in biology research produce a continuously 
growing array of data input used to produce data output with an increasing 
abundance of features. While growth in the volume and diversity of data input can 
be highly valuable for studying biological systems, it presents the challenge of 
managing enormous quantities of features, many of which are not relevant to the 
specific research question being asked.  This excess data input burdens storage and 
computation of downstream clustering and machine learning (ML) tasks. A common 
approach used to manage this data input relies on filters applied to the features by 
their variance across the sample set, while applying random cutoffs. 

Our proprietary algorithm, MADVAR, enables the prioritization of variable features 
from high-throughput continuous data, by automatically finding an optimal cutoff 
for the distribution of the data.  Based on the right-skew nature of biological data 
variance distribution, MADVAR finds and excludes the "0 variance peak" using the 
median of the distributions and the median absolute deviation (MAD). MADVAR 
enables a faster analysis with a reduced memory requirement, and dramatically 
improves clustering results with minimal loss of relevant features.

MADVAR cutoff is calculated as median + B*MAD, where the coefficient B = 2 in this 
study, but can be adjusted by the user. Alternatively, the function allows to use 
mode*B as a cutoff. Euclidean distance method was used throughout the study. 

The Ward.D method was used for hierarchical clustering. Random forest was run 
with ntree > = 250.

MADVAR enables a faster analysis with a reduced memory 
requirement, while improving clustering results with 
minimal loss of relevant features. 

Conceptually, it optimizes the balance between feature 
selection, an essential step in ML approaches, and the 
integrity of data elements required to explain a complete 
biological system.

To demonstrate the assumption of right-skewed variance distribution in various 
biological dataset, we selected multiple data sets of diverse types, including RNAseq 
read counts (fig. 1A-C) and RNAseq TPM (fig. 1D) and proteomics (fig. 1E-G), and 
observed their variance distribution densities. Indeed, all data types displayed 
similar distribution shapes, with a high peak on the left end corresponding to near-
zero variance. Consistently, the mode of the variance corresponded to the summit 
of the peak, while the median was immediately after, arguably at the center of the 
peak (blue and gray dashed lines, respectively). The MADVAR cutoff was calculated 
as median + 2*MAD (red line). It is shown that MADVAR can consistently and 
accurately identify the "0 variance peak".

To assess the performance of MADVAR, two additional, commonly applied cutoffs 
were used as a benchmark (Table 1). The differentially filtered datasets were then 
clustered by several methods, both unsupervised and supervised. Subsequently, 
the quality and performance of the clustering was measured and compared.
To assess and compare the quality of unsupervised clustering, we calculated the 
connectivity, Dunn index and Homogeneity index (BHI) in the different datasets 
(fig.2-4, respectively), where the number of clusters (k) was applied according to the 
number of levels in each grouping term, shown in table 2. Clustering of MADVAR- 
filtered datasets provided the most connected (fig. 2) and phenotypically 
homogeneous (fig. 4) clusters, more frequently than the other filtering approaches. 
While MADVAR was not the most frequent best performer according to the Dunn 
index (which measures the inter- to intra cluster distance ratio), in specific cases it 
has dramatically better scores than the other approaches (fig. 3 Breast and NSCLC 
RNA).

To compare classification performance of supervised learning, we chose random 
forest as a representative ML method. It was run in multiple seed iterations (n = 48), 
from which the out-of-bag (OOB) error rates were extracted and used as a 
performance metric. Here too, MADVAR showed the best performance, having the 
lowest mean or median error rate in the majority of datasets (fig. 5).

Dataset Type # Samples Above 20% Above 80% MADVAR Grouping
TCGA RNAseq normalized 

counts
1312 38502 9626 11000 Clinical status, 

Tissue, Primary 
disease

CO SARCOMA RNAseq TPM 143 10840 2710 3206 Tumor subtype
CO SARCOMA Proteomics (relative 

abundance)
135 2737 685 579 Tumor subtype

CO BREAST RNAseq TPM 131 10379 2595 2974 Tumor status
CO BREAST Proteomics (relative 

abundance)
122 4017 1005 720 Tumor status

CO NSCLC RNAseq TPM 200 10595 2649 3134 Histology
CO NSCLC Proteomics (relative 

abundance)
148 3581 896 640 Histology

Grouping Cohort Groups N
sample_type TCGA Normal, Tumor 2

primary_disease TCGA bladder_urothelial_carcinoma, breast_invasive_carcinoma, colon_adenocarcinoma
esophageal_carcinoma, head_neck_squamous_cell_carcinoma,

kidney_chromophobe,
kidney_clear_cell_carcinoma, kidney_papillary_cell_carcinoma, liver_hepatocellular_
carcinoma, lung_adenocarcinoma, lung_squamous_cell_carcinoma, prostate_adeno

carcinoma, rectum_adenocarcinoma, stomach_adenocarcinoma,
thyroid_carcinoma, uterine_corpus_endometrioid_carcinoma

16

Tissue TCGA Breast, colorectal, head_neck, kidney, liver, lung, prostate, stomach, thyroid, other 10
Tumor subtype Champions Oncology Sarcoma: EWING SARCOMA, GIST, LEIOMYOSARCOMA 

LIPOSARCOMA, OSTEOSARCOMA, Other
6

Tumor subtype Champions Oncology Breast: METASTATIC, PRIMARY 2
Histology Champions Oncology NSCLC: ADENOCARCINOMA, SQUAMOUS CARCINOMA, Other 3

Table 1. Summary of the datasets used in the study. “TCGA” included indications for which normal 
samples were available. CO: Champions Oncology datasets. TPM: Tags per million. Columns “Above 20%”, 
“Above 80%”, “MADVAR” show the number of features left after applying the corresponding filter.

Table 2. Summary of phenotypic grouping used in the study. The number of levels (N) was used as k in 
unsupervised clustering assessment. GIST: GASTROINTESTINAL STROMAL TUMOR

Figure 1. Distribution densities of various data types (see table 1). Blue: mode (Asselin estimate, bw = 
0.9). Gray: median.  Red: final cutoff (median + MAD * mads), where mads = 2. 

Figure 2. The connectivity indicates the degree of connectedness of the clusters, as determined by 
the k-nearest neighbors. The connectivity has a value between 0 and infinity and should 
be minimized. hc: hierarchical clustering. Pam: partition around medoids

Figure 3. The Dunn Index is the ratio of the smallest distance between observations 
not in the same cluster to the largest intra-cluster distance. The Dunn Index has a 
value between zero and infinity and should be maximized. hc: hierarchical clustering. 
Pam: partition around medoids

Figure 4. Homogeneity index (BHI).  Measures the average proportion of sample pairs 
that are clustered together which have matching annotation classes. The BHI is in the 
range [0,1], with larger values corresponding to more homogeneous clusters. hc: 
hierarchical clustering. Pam: partition around medoids

Figure 5: Out-of-bag (OOB) error rates measured in multiple runs of random forest 
(n=48). The out-of-bag error is a performance metric that estimates the performance 
of the Random Forest model using samples not included in the bootstrap sample 
for training. The diamond inside the box indicates the mean.

RESULTS


	Slide Number 1

